












### **BREAKING THE 20% EFFICIENCY BARRIER**

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 20.9  $\!\%.$ 



#### THE MOST THOROUGH TESTING PROGRAMME IN THE INDUSTRY

Q CELLS is the first solar module manufacturer to pass the most comprehensive quality programme in the industry: The new "Quality Controlled PV" of the independent certification institute TÜV Rheinland.



### INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.



### **ENDURING HIGH PERFORMANCE**



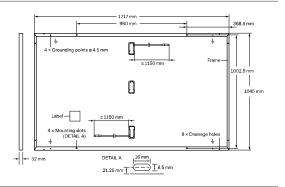
#### **EXTREME WEATHER RATING**

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).



# A RELIABLE INVESTMENT

Inclusive 25-year product warranty and 25-year linear performance warranty<sup>2</sup>.

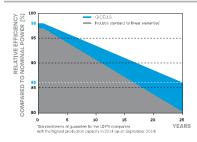

 $^{\rm 1}$  APT test conditions according to IEC/TS 62804-1:2015, method A (–1500 V, 96h)

### THE IDEAL SOLUTION FOR:





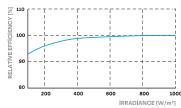
<sup>&</sup>lt;sup>2</sup> See data sheet on rear for further information.




#### **ELECTRICAL CHARACTERISTICS**

| POV                                                                                 | VER CLASS                          |                  |     | 350   | 355   | 360   | 365   | 370   |
|-------------------------------------------------------------------------------------|------------------------------------|------------------|-----|-------|-------|-------|-------|-------|
| MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC1 (POWER TOLERANCE +5 W / -0 W) |                                    |                  |     |       |       |       |       |       |
|                                                                                     | Power at MPP¹                      | P <sub>MPP</sub> | [W] | 350   | 355   | 360   | 365   | 370   |
|                                                                                     | Short Circuit Current <sup>1</sup> | I <sub>sc</sub>  | [A] | 10.97 | 11.00 | 11.04 | 11.07 | 11.10 |
| nnu                                                                                 | Open Circuit Voltage <sup>1</sup>  | V <sub>oc</sub>  | [V] | 41.11 | 41.14 | 41.18 | 41.21 | 41.24 |
| Mini.                                                                               | Current at MPP                     | MPP              | [A] | 10.37 | 10.43 | 10.49 | 10.56 | 10.62 |
| 2 .                                                                                 | Voltage at MPP                     | $V_{MPP}$        | [V] | 33.76 | 34.03 | 34.31 | 34.58 | 34.84 |
|                                                                                     | Efficiency <sup>1</sup>            | η                | [%] | ≥19.5 | ≥19.8 | ≥20.1 | ≥20.3 | ≥20.6 |
| MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT <sup>2</sup>               |                                    |                  |     |       |       |       |       |       |
|                                                                                     | Power at MPP                       | P <sub>MPP</sub> | [W] | 262.6 | 266.3 | 270.1 | 273.8 | 277.6 |
| E .                                                                                 | Short Circuit Current              | I <sub>sc</sub>  | [A] | 8.84  | 8.87  | 8.89  | 8.92  | 8.95  |
| ië.                                                                                 | Open Circuit Voltage               | V <sub>oc</sub>  | [V] | 38.77 | 38.80 | 38.83 | 38.86 | 38.90 |
| Ē                                                                                   | Current at MPP                     | I <sub>MPP</sub> | [A] | 8.14  | 8.20  | 8.26  | 8.31  | 8.37  |
|                                                                                     | Voltage at MPP                     | V <sub>MPP</sub> | [V] | 32.24 | 32.48 | 32.71 | 32.94 | 33.17 |

 $<sup>^{\</sup>text{L}}\text{Measurement tolerances P}_{\text{MPP}} \pm 3\%; I_{\text{SC}}, V_{\text{CO}} \pm 5\% \text{ at STC}: 1000 \text{W/m}^2, 25 \pm 2^{\circ}\text{C}, \text{AM 1.5 according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM 1.5} \text{ according to IEC 60904-3} \cdot ^{2}800 \text{W/m}^2, \text{NMOT, spectrum AM$ 


#### Q CELLS PERFORMANCE WARRANTY



At least 98% of nominal power during first year. Thereafter max. 0.5% degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

## PERFORMANCE AT LOW IRRADIANCE



Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

| TEMPERATURE COEFFICIENTS                    |   |       |       |                                      |      |       |       |
|---------------------------------------------|---|-------|-------|--------------------------------------|------|-------|-------|
| Temperature Coefficient of I <sub>SC</sub>  | α | [%/K] | +0.04 | Temperature Coefficient of Voc       | β    | [%/K] | -0.27 |
| Temperature Coefficient of P <sub>MPP</sub> | γ | [%/K] | -0.34 | Nominal Module Operating Temperature | NMOT | [°C]  | 43±3  |

#### PROPERTIES FOR SYSTEM DESIGN

| Maximum System Voltage        | $V_{\text{SYS}}$ | [V]  | 1000      | PV module classification           | Class II      |
|-------------------------------|------------------|------|-----------|------------------------------------|---------------|
| Maximum Reverse Current       | $I_R$            | [A]  | 20        | Fire Rating based on ANSI/UL 61730 | C/TYPE 2      |
| Max. Design Load, Push / Pull |                  | [Pa] | 3600/2660 | Permitted Module Temperature       | -40°C - +85°C |
| Max. Test Load, Push / Pull   |                  | [Pa] | 5400/4000 | on Continuous Duty                 |               |

### **QUALIFICATIONS AND CERTIFICATES**

Quality Controlled PV - TÜV Rheinland; IEC 61215:2016; IEC 61730:2016. This data sheet complies with DIN EN 50380. QCPV Certification ongoing.





Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

#### Hanwha Q CELLS GmbH

 $Sonnenallee 17-21, 06766 \ Bitterfeld-Wolfen, Germany \ | \ \textbf{TEL} + 49\ (0)3494\ 66\ 99-23444 \ | \ \textbf{FAX} + 49\ (0)3494\ 66\ 99-23000 \ | \ \textbf{EMAIL} \ sales @q-cells.com \ | \ \textbf{WEB} \ www.q-cells.com \ | \ \textbf{WEB} \ ww.q-cells.com \ | \ \textbf{WEB} \ w.q-cells.com \ | \ \textbf{WEB} \$ 

